Barnett's Theorems About the Greatest Common Divisor of Several Univariate Polynomials Through Bezout-like Matrices

نویسندگان

  • Gema María Díaz-Toca
  • Laureano González-Vega
چکیده

This article provides a new presentation of Barnett’s theorems giving the degree (resp. coefficients) of the greatest common divisor of several univariate polynomials with coefficients in an integral domain by means of the rank (resp. linear dependencies of the columns) of several Bezout-like matrices. This new presentation uses Bezout or hybrid Bezout matrices instead of polynomials evaluated in a companion matrix as in the original Barnett’s presentation. Moreover, this presentation also allows us to compute the coefficients of the considered greatest common divisor in an easier way than in the original Barnett’s theorems. c © 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Low Rank Approximation of a Bezout Matrix

The task of determining the approximate greatest common divisor (GCD) of more than two univariate polynomials with inexact coefficients can be formulated as computing for a given Bezout matrix a new Bezout matrix of lower rank whose entries are near the corresponding entries of that input matrix. We present an algorithm based on a version of structured nonlinear total least squares (SNTLS) meth...

متن کامل

Squarefree Decomposition of Univariate Polynomials Depending on a Parameter. Application to the Integration of Parametric Rational Functions

The squarefree decomposition of a univariate polynomial, P (y) ∈ K[y], K being a characteristic zero field, is one of the most basic problems in computer algebra (after the greatest common divisor computation, probably the most basic one). The parametric case has not usually been considered in the literature and this paper is dedicated to showing how the case of a single parameter can easily be...

متن کامل

Complexity of Algorithms for Computing Greatest Common Divisors of Parametric Univariate Polynomials

This paper presents a comparison between the complexity bounds of different algorithms for computing greatest common divisor of a finite set of parametric univariate polynomials. Each algorithm decomposes the parameters space into a finite number of constructible sets such that a greatest common divisor of the parametric univariate polynomials is given uniformly in each constructible set. The f...

متن کامل

Computing Approximate GCD of Univariate Polynomials by Structure Total Least Norm

The problem of approximating the greatest common divisor(GCD) for polynomials with inexact coefficients can be formulated as a low rank approximation problem with Sylvester matrix. This paper presents a method based on Structured Total Least Norm(STLN) for constructing the nearest Sylvester matrix of given lower rank. We present algorithms for computing the nearest GCD and a certified 2-GCD for...

متن کامل

Approximate Gcd of Inexact Univariate Polynomials

− The problem of finding the greatest common divisor (GCD) of univariate polynomials appears in many engineering fields. Despite its formulation is well-known, it is an ill-posed problem that entails numerous difficulties when the coefficients of the polynomials are not known with total accuracy, as, for example, when they come from measurement data. In this work we propose a novel GCD estimati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2002